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AABBSSTTRRAACCTT
Blast barrier walls have been shown to reduce blast loads on structures,
especially in urban environments. Analysis of existing test and
simulation data for blast barrier response has revealed that a need still
exists to determine the bounds of the problem and produce a fast-
running accurate model for the effects of barrier walls on blast wave
propagation. Since blast experiments are very time intensive and
extremely cost prohibitive, it is vital that computational capabilities be
developed to generate the required data set that can be utilized to
produce simplified design tools. The combination of high fidelity
model-based simulation with artificial neural network techniques is
proposed in this paper to manage the challenging problem. The
proposed approach is demonstrated to estimate the peak pressure,
impulse, time of arrival, and time of duration of blast loads on buildings
protected by simple barriers, using data generated from validated
hydrocode simulations. Once verified and validated, the proposed
neural-network model-based simulation procedure would provide a
very efficient solution to predicting blast loads on the structures that
are protected by blast barrier walls.

11..  IINNTTRROODDUUCCTTIIOONN
Blast barrier walls are often implemented as an integrated protective element for increasing
the level of protection for a structure or facility. When designed carefully, they can increase
the level of protection for a structure or facility in several ways. The main protection is
provided by the standoff between the threat and the structure or facility, since blast waves
have been shown to decay exponentially with distance [1]. A second advantage is that blast
walls can greatly reduce the blast loads in the environment immediately behind them [2].
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This occurs because the blast pressure wave is forced to propagate over the height of the blast
wall (reflecting some of the energy away from the building) and then expand back down the
other side towards the ground (thereby dispersing more of the energy). Yielding of the barrier
will also absorb some of the energy. In this case, the biggest advantage is attained by making
the blast wall similar in height and close in proximity to the structure being protected. If the
blast wall is too far away from the structure, the advantage of having a large standoff is
attained (that of decay in the concentration of its energy), but the blast wave has time to build
back to a uniform shock front propagating along the ground and the loads to the structure
will be similar to the configuration where no blast barrier wall is present.

Predicting blast loads on structures in an open air environment is something that is well
understood [10] and is captured by existing prediction methodologies which will be referred
to as the TM5-1300 method [1]. However, the solution to blast loads on structures is greatly
complicated by the presence of a blast barrier wall. Blast pressures and impulse are reduced
due to the reflection and dispersion of some of the wave’s energy by the barrier. On the other
hand, peaks and troughs in the blast loading across the face of the building can result from
interference between the leading wave and the portion of it reflected off the ground behind
the barrier. This configuration is a non-linear problem. Depending on the specific
configuration of the charge weight, W, the charge to barrier standoff, d1, the charge to
structure standoff, Z, and the barrier height, H, (Figure 1), there are multiple reflections of
the blast wave that occur in the problem. For small barrier to building standoff
configurations, there are at least two spikes in the reflected pressure loading the structure;
one for the direct line of the shock front propagating over the barrier wall and directly
towards any point on the structure, and a second where the shock front propagates back to
the ground and then reflects onto the structure. The effect is lessened at higher locations
vertically on the structure. Additional significant spikes can occur when the shock front
reflects back and forth between the building and the barrier. As the barrier to structure

160 A Neural-Network Model-Based Engineering Tool for Blast Wall Protection of Structures

W(kg-TNT)

d1(m)

Z (m) = d1 + d2

H (m)

b (m)

Ws (m)

hs (m)

wr (m) lr (m)

Figure 1. Blast barrier wall configuration



standoff is increased, the structure loads begin to resemble loads in the free-field blast
propagation configuration. The complexity of the problem requires enhanced multivariate,
non-linear tools for modeling and analysis.

One approach to predicting blast loads with protective blast walls includes case-specific
computational modeling with software such as LS-DYNA [12], AUTODYN [13], FEFLO
[14], Air3D [15], SHAMRC [16], CTH [18], and DYSMAS [19]. The downside to this
approach is the logistics of performing such simulations while ensuring the accuracy of the
predictions. If there is a single facility site configuration to evaluate, then this might be a
good approach for an experienced computational modeler to perform. If there are multiple
cases to be considered, i.e. differing standoffs, charge sizes, and blast wall heights, then a
simulation modeling approach becomes very cumbersome and time consuming. Even using
the most powerful of multi-processor based supercomputers, the simulations can take days
or weeks to execute [20]. Moreover, supercomputers are typically shared resources and may
incur lengthy wait times before a job is processed, further increasing the time before output
of results. Studies attempting to reduce the time required to execute a simulation by using a
much coarser spatial mesh for the models have shown errors as much as 50% [21].

An alternative approach that can produce estimates of peak pressure and impulse
extremely quickly (in a fraction of a second) uses empirically derived curves hand-crafted to
fit data gathered from a set of experiments. Specifically, experimental data have been used
to develop rules and factors for adjusting the estimates from the TM5-1300 method of
predicting loads on structures in free-field blast configurations. Rose et al. [2] applied this
technique to data gathered from small scale experiments to generate prediction charts. This
technique was outlined in UFC 4-020-03 [4] and is a very common approach used in the blast
community when dealing with blast walls. Bogosian et al. [5] added 40 live blast tests to the
data from the Rose et al. work to expand the bounds of the prediction method. The approach
shows ranges of accuracy. The methods produce higher values of uncertainty for pressure
than for impulse. Rickman et al. [7] conducted a series of experiments and computational
simulations at approximately 1:18 and 1:30 scales used to develop curve-fitted models of
blast barrier effectiveness. The final product from the Rickman et al. experiments was a
series of adjustment factors for pressure and impulse loadings with a blast wall present. The
work further expanded the bounds of the prediction method as based upon the work of Rose
et al. and Bogosian et al. Zhou and Hao [9] took a similar approach, but used simulation
models (based on AUTODYN), rather than live experiments, to generate a database of
pressure-time histories over the height of a structure for a range of blast barrier wall
configurations. A series of logical rules were generated to select from a set of curves based
on observations from these simulations. The above empirical models were evaluated using
the same data used to generate the model, or using a very small sample of problem
configurations. As such, more work is required to validate their performance across the entire
problem domain.

Artificial neural networks (ANNs) have also been used as an empirically based method for
modeling the blast loads on structures behind a protective blast barrier wall. Compared to the
hand-crafted curve fitting approach discussed above, ANN’s have the advantage that they can
develop much more intricate and thus accurate curves to fit a set of experimental observations,
and they do this automatically. In fact, in principle, there is no limit to the complexity of the
curves (or hyper-surfaces in the case of multivariate problems) that an ANN can develop or to
the number of independent variables they can consider, given sufficient training data and
computing resources (such as memory and processing time) [22]. However, the approach also
has similar restrictions in that it requires a large data set to accurately develop the models, and
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the models are not able to extrapolate well beyond the bounds of the experimental data.
Moreover, as is usually the case with empirical methods, the number of observations required
to develop a model tends to increase geometrically with the number of independent variables
describing the problem thus placing a practical limit on the complexity of the problem that can
be considered. Remennikov and Rose [24] developed an ANN-based model that covered
several of the values represented in Figure 1 (d1, Z, and H) as well as the height of burst
(HOB) and the height of measuring point behind the barrier wall, using data from miniature
scale experiments for free-field propagation behind a barrier without a reflective structure.
The model output the peak scaled pressure and the peak scaled impulse. The model showed
good correlation with the data, but had a limited range of applicability due to the distribution
of the available training data. Similar work has been performed by the authors of this paper
exploring the capability of a radial Gaussian (RGIN) neural networking method, using
existing live experimental data [20]. The study found that existing data is too sparse and does
not provide a good even distribution of the variable space.

Of the direct modeling methods that have been developed for estimating the blast loading
on buildings, ANNs appear to have the greatest potential. As with all direct estimation
models, they can generate results in a fraction of a second thereby allowing optimal blast
mitigation designs to be found within a reasonable period of time. Moreover, they can in
principle develop solutions to nonlinear problems to any degree of accuracy (given sufficient
data and training) and they can consider any number of independent variables within a
model. However, as with all empirically-based direct modeling methods, there is a practical
limitation to the approach resulting from the quantity of data required to develop a model
which tends to increase geometrically with the number of independent variables. This
effectively limits the level of accuracy that can be achieved and the range of problems that
can be considered. Existing studies have not tested the practical limits of this technology, and
many of them have failed to provide a thorough and balanced validation of their
performance. The objective of this study is to address this issue and thereby identify the true
potential of ANN-based direct estimation of blast loading on buildings.

22..  MMEETTHHOODDOOLLOOGGYY
The approach is to populate data through numerical simulations in order to generate an
accurate and efficient ANN model-based engineering tool. The idea behind a neural network
is that it fits a surface (or hypersurface) to a set of observations of the performance of the real
system. Neural networks have many benefits. They work well with large numbers of
independent variables and highly non-linear problems; and can be trained to output a variety
of solutions.

The approach for the current study is to populate a 3 × 3 × 3 × 3 grid of the data variable
space using computational modeling. In other words, a range of three values was used for
each of the four main independent variables. The limitation of this approach is the exclusion
of certain variables. Eight independent variables were considered in this study as illustrated
in Figure 1; W, d1, Z, H, ws, wr, hs, and lr . with the thickness of the barrier, b, set constant at 
0.3 m The four main independent variables used are W, d1, Z, and H. Two other dependent
variables(either ws, and hs, or wr, and lr, which define a position on the front of the structure
or its roof, respectively) will be input into the ANN, but they do not affect the number of
simulations required as these data points are inherently captured within the confines of each
simulation. In order to completely cover the data space, the number of data points required
is determined by the number of data points in the variable space grid raised to the power of
the number of independent variables. This means that a data set of 81 (34) experiments is
required to fully encapsulate the variable space for a 3 × 3 × 3 × 3 grid.
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The scope entails a setup of 91 experiments of which 81 simulations were used to
populate data with appropriate blast barrier configurations to train the neural network
models. The other 10 simulations were used to verify and validate the accuracy of the
neural network. The ranges for the series of experiment configurations are shown in Table
1 – these values were selected to encompass the majority of configurations encountered in
the field. The structure width, ws, and structure height, hs, (or roof width, wr, and roof
length, lr) are shown as varied values to allow the neural network to produce loadings at
any point on the face (or roof) of the structure. Separate ANN models were developed for
predicting peak pressure, impulse, time of arrival for the peak pressure, and the positive
phase duration of the applied blast loads on the face of the structure and on the roof of the
structure. Other parameters (such as the width of the building – which was considered to
be infinite) were not treated as variables to keep the data set required to develop model at
a reasonable size.

The ANN training data included a grid of data history points on the surfaces where
predictions were desired. For the structure face, a 6 × 31 grid of data points for a total of 
186 data points were collected from each experiment. For the roof models, a 6 × 6 grid of
data points were generated giving a total of 36 data points. The ANN can then predict the
results at any point within the bounds of the defined variable space in Table 1. For the roof
loading, data were collected only for the first 1.524 m of the roof. The barrier wall was
considered to be infinitely long, so there would be no wrap-around effects included.

33..  NNUUMMEERRIICCAALL  SSIIMMUULLAATTIIOONN
There are several existing computational codes which have invested much effort into the
capability to accurately model the blast environment. The codes considered are first-
principle model-based approaches that model the detonation and burn of explosive materials,
and the energy transferred into a blast wave. SHAMRC [16], CTH [18], and DYSMAS [19]
have been evaluated for the current effort. CTH and SHAMRC are hydrocodes that have
been used extensively for blast modeling [25]. DYSMAS is a hydrocode that was developed
for underwater explosions. It features a fluid solver, GEMINI [27], coupled with a US Navy
version of DYNA2D. While DYSMAS has been used extensively and validated for
underwater explosion events, there is little work with the code for explosions in air, although
it has been used with success for modeling a blast event of a field fortification [28].

Verification and validation of numerical software provide engineers with the tools to bound
the amount of error that might be expected in a given simulation. A mesh convergence study has
been performed in this project to compare the accuracy and performance of each selected code.
The error and mesh size requirements have been compared using the idea of a grid convergence
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Table 1. Range of values for the six independent variables

Min Max
W TNT (kg) 22.68 910.42
d1 (m) 0 7.62
Z (d1 + d2) (m) 3.048 30.48
H (m) 1.52 6.1
hs (m) 0 9.144
ws (m) 0 1.52
b (m) 0.3 0.3
lr (m) 0 1.524



index (GCI) [29]. A 2D-axisymmetric comparison of CTH, SHAMRC and DYSMAS has been
performed by considering a free-field airblast problem. The results are also compared against
existing work determining a GCI for LS-DYNA, CTH, and AUTODYN [31].

Results from the two studies showed that LS-DYNA, CTH, and DYSMAS appear to be
good options in regard to the rate of convergence and accuracy for both pressure and
impulse. Due to the volume of data required to train the desired neural networks, an efficient
scalable code is desired. DYSMAS has ultimately been chosen due to its superior
performance in regards to the trade-offs between the efficiency and accuracy for creating a
large database of simulation results.

For validation of the accuracy, the simulation of a live blast experiment was considered.
The problem chosen was performed by the Air Force Research Laboratory at Tyndall AFB,
FL. The experiment setup includes a metal revetment blast barrier wall in front of a rigid
faced structure. The computational domain for modeling the blast barrier configuration was
set up with a half symmetry model. The bare explosive charge was placed as a hemispherical
charge on the ground level. The planes that do not act as planes of symmetry were modeled
using outflow boundary conditions. Figure 2 shows the overlay of the simulation results as
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compared with the live blast data gathered from reflective pressure gauges. As can be seen,
the peak pressures are predicted very well, while the impulse shows a little more variation.

44..  NNEEUURRAALL  NNEETTWWOORRKK  DDEEVVEELLOOPPMMEENNTT
4.1. BLAST BARRIER SIMULATION PROBLEM SETUP
The convergence studies and live blast data validation experiments provided confidence in the
accuracy of DYSMAS for modeling blast shock wave propagation. For this reason, the study
was carried out using DYSMAS. For each simulation completed in the current study, a
common format was used. The blast wall simulations were all set up as half symmetry. For each
simulation, the standoff behind the bare hemispherical surface charge opposite the blast wall
was set to 1.524 m. The width of the simulation was also set to 1.524 m (correlates to ws) due
to restrictions of performing large numbers of memory intensive simulations. The structure
height, hs, was set to 9.144 m due to the restrictions of the number of input variables the ANN
could manage without requiring an excessive number of training patterns. The thickness of the
blast barrier, b, was set to 30.48 cm as a sensitivity study found that 
the thickness of the blast wall has only a minor effect on the blast load to the structure 
behind the blast wall. Refer to Figure 1 for domain configuration and variable definitions.

Tracer data collection points were collected at evenly spaced increments on the face of the
barrier, the face of the structure, and on the first 1.524 m of the roof of the structure. The data
tracer points were placed at 30.48 cm increments on each face. On the structure face, there
were 31 tracer points over the height of the structure and 6 tracer points over the width for a
total of 186 data collection points on the structure face for each simulation. On the roof
structure, an evenly spaced grid had 6 tracer points over the length, and 6 tracer points over
the width for a total of 36 tracer points

In order to produce a model with a good all-round performance, it is important to train the
ANN with data that covers all regions of the variable space. As outlined in Table 1, there are
nine independent variables to this problem, six of which are considered as inputs to the ANN
model: W, d1, Z, H, and either (hs and ws) or (lr and wr) – the latter choice depends whether
the model represents the front face of the building or its roof. Two of these, the locations on
the structure face hs and ws (or lr and wr) are inherent in each simulation and, thus, do not
require extra simulations to fill that part of the variable space. Generally, experience shows
that collecting data that covers a grid configured such that there are 3 values on each variable
axis of the data space is required at a minimum to get accurate results from an ANN model.
Moving to denser grids will provide extra information that will usually allow the ANN to
develop a more accurate model although this can be quite cumbersome. In order to
completely cover the data space, the number of data points required is determined by the
number of data points in the variable space grid raised to the power of the number of
independent variables. For the current study, there are four independent variables. Thus, for
a 3 × 3 × 3 × 3 grid, there are 34 = 81 simulations required.  To collect enough data for a 
5 × 5 × 5 × 5 grid would require 54 = 625 simulations.  Due to the sheer volume of
computational memory and time required, this study focused on developing the 3 × 3 × 3 × 3
grid with 81 simulations.  An additional 10 simulations were completed at randomly selected
points in the variable space; 5 as test conditions, and 5 used to show the effect of increasing
the density of data points.

This study has considered four main approaches to the problem.  In each case, training of
the ANN models was performed using a sample of the data collected from each simulation.
For the structure face, data from 36 of the 186 tracer points were used to develop the training
patterns.  In the first approach presented, an evenly spaced 6 × 6 grid of the tracer points on
the structure face was used to train the ANN model. The effects of using blast scaling were



also explored. The second approach considered the effect of biasing the collection of data
from the grid on the structure faces to collect more data in the ranges that showed the greatest
error from approach one. In approach three, an assessment was made of the effect of using
additional simulations to increase the density of the training patterns in the variable space.
An additional 5 randomly generated simulations were used to generate these additional
training patterns. The fourth focus area examined the effect of blast walls on the roof loads.
For the roof portion, 9 of the 36 tracer points collected in each simulation on the surface of
the roof were used for training purposes.

4.2. APPROACH ONE: EVENLY SPACED TRAINING GRID
The first approach was to train four ANNs for predicting peak pressure, p (MPa), impulse, 
i (MPa-ms), time of arrival, toa (ms), and positive phase duration, tdur (ms), respectively
using training data based on an evenly spaced grid on the structure face. The independent
input variables were d1 (m), Z (m), h (m), and W (kg-TNT) and the height, hs (m) and
width, ws (m) on the structure face The ANNs were trained using data from the primary 
81 simulations performed.

The specific type of ANN adopted for this study was RGIN, a radial Gaussian architecture
with an incremental learning paradigm [22]. RGIN networks function as a three layer feed
forward system. The three layers are the input variables, hidden neurons, and the output
variable. RGIN networks represent the data as a composite of radial-Gaussian functions. The
hidden neuron portion of the feed forward system represents the number of radial-Gaussian
functions used to fit the data. Each time a hidden neuron is added, a new radial-Gaussian
function is added onto the system to capture the section of the problem with the largest residual
errors. Development of an RGIN network progresses one hidden neuron at a time. Each hidden
neuron is added so that the centroid of its radial Gaussian function is positioned over the largest
error data point, its amplitude is equal to that error, and its spread is set to a value that reduces
the sum of the absolute values of all residual errors as much as possible. The RGIN approach
has been shown to work well with large sets of data [20]. A schematic of this type of network
for a single independent variable is illustrated in Figure 3 where the dashed blue curves each
represent the function implemented by a single hidden neuron, the red line is the combined
output from the network, and the asterisks represent the target points for training.

Initial testing of ANN models was conducted with data from tracer points in between
those used for training. Since this is not a fully accurate depiction of the validity for the ANN
models, this approach was used for qualitative comparison of the different approaches to the
ANN models. Figure 4 shows the training progress of the ANN approach to predicting the

166 A Neural-Network Model-Based Engineering Tool for Blast Wall Protection of Structures

hJ

h2

Input
neuron

Hidden
neuron

Output
neuron

h1 y1
o1,

s1 a1,α1
x1

x2

xI

d

h

Z

eg: pressure (p)

1st neuron

2nd neuron
3rd neuron

ANN model Peak pressure

Standoff

Figure 3. Schematic of RGIN neural network



impulse loading to the structure face. It is typical of the results for the other three ANN
models for the impulse, time of arrival, and positive phase duration. The mean absolute error
was 40 kPa-ms, which relates to about 6% error. The correlation factor for each ANN was
0.9814, 0.9938, 0.9681, and 0.9806 for the peak pressure prediction, impulse prediction,
positive phase duration prediction, and time of arrival prediction respectively. The mean
absolute error for each ANN was 0.644 MPa, 0.040 MPa-ms, 2.22 ms, and 0.864 ms for the
peak pressure prediction, impulse prediction, positive phase duration prediction, and time of
arrival prediction respectively.

The initial ANN development showed very good correlation with the sample data points.
One point of interest to be considered is the effect of using blast scaling. Blast scaling is a
common practice for reducing the number of input variables and simplifying blast
problems [1]. It is also commonly used to alter full-scale experiments into small-scale
experiments. This practice helps cut costs for construction, and the difficulty of having large
scale ranges capable of performing large scale detonations. The blast scaling concept relates
all dimensions of a blast configuration through the charge weight by scaling the distances by 
W−1/3. Cubed root scaling removes the charge weight as a variable. This concept has been
used with reasonably good correlation for several other blast wall effectiveness efforts [2].
The expectation was that with fewer input variables, the ANN might be able to converge on
an acceptable solution more quickly for a given number of hidden neurons (radial-Gaussian
functions). Figure 5 shows the results of the ANN models trained with 500 hidden neurons
for both the scaling and non-scaling versions of the network. While both results show good
correlation, the scaled version has more errors in the mid and low peak pressure range. This
does not show in the correlation coefficient since most of the errors are in the low and mid
range biasing the measure of the correlation coefficient. Also, the non-scaled version has a
higher kurtosis, meaning that the errors are a factor of a few outlier data points as opposed
to many moderate sized errors as in the scaled version.
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Figure 4. Training progress for RGIN ANN on impulse load to structure
prediction
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The non-scaled version produces better results than the scaled version. This is not an
implication on the validity of the practice of cubed-root scaling, but rather a depiction of the
ability of the ANN to learn the training patterns. When cube-root scaling is applied, the errors
due to the charge size are hidden in the other variables. With the 6 variables, the ANN is able
to learn the patterns better. Therefore, all following work was performed without the use of
cube-root scaling.

4.3. APPROACH TWO: BIASED SPACING OF TRAINING GRID
Analysis of the results from approach one showed a bias of the absolute errors towards the
base of the structure, in particular for points below the height of the barrier, as depicted in
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Figure 5. Peak pressure results for (a) scaled input (5 input variables)
and (b) non-scaled input (6 input variables)



respect to peak pressure predictions in Figure 6. To address this problem, the second
approach used tracer points that were biased in location on the face of the structure towards
its base. The location of the tracers on the width of the structure remained the same, however.
This provided the ANN with more training data in the areas that had shown the greatest
absolute errors in the peak pressure predictions.

Table 2 shows the comparison of the behavior of the evenly spaced grid in comparison
with the biased grid with 500 hidden neurons.

International Journal of Protective Structures – Volume 2 · Number 2 · 2011 169

250

150

%
 A

bs
ol

ut
e 

er
ro

r
200

100

50

0
0 2 4

Height on structure (m)
6 8 10

Below barrier height
Above barrier height

Table 2. Statistical comparison of an evenly distributed grid of training
points and a biased grid

Correlation 
ANN factor MAE RMSE Std deviation Kurtosis
model Even Bias Even Bias Even Bias Even Bias Even Bias
Pressure

(MPa) 0.981 0.987* 0.06 0.04* 0.21 0.17* 1.09 1.06* 15.07 14.8*
Impulse

(MPa-ms) 0.993 0.995* 0.04* 0.08 0.42 0.36 3.79 3.78 4.13 3.74*
Time of

Arrival 
(ms) 0.980* 0.979 0.86* 1.41 5.25* 5.36 26.9 26.7* 3.76 3.40*

Duration 
(ms) 0.968* 0.961 2.22 1.92* 7.96 8.78 31.6* 31.8 –0.31 –0.24*

Statistical Measure NB: *indicates winning pattern set.

Figure 6. Bias of peak pressure errors towards heights on the structure
face below the height of the blast wall



The analysis of biasing the grid of training points lower on the structure face produces
some interesting results. The peak pressure ANN is improved by all accounts when using the
biased grid. The correlation is stronger, the mean absolute error (MAE) is reduced and it
shows a more linear behavior with fewer large error occurrences. The impulse ANN is also
improved by biasing the grid with the exception of the MAE which doubles. Despite the
MAE increase, it shows a more linear distribution with fewer occurrences of large errors.
There are more occurrences of small errors, but the general fit is better. The time of arrival
ANN has stronger correlation, and smaller MAE and root mean square error (RMSE) for the
evenly spaced grid, although the standard deviation and kurtosis are better with the biased
grid. The evenly spaced grid shows better correlation in general, but the biased grid shows
better results for high values of the time of arrival. The duration ANN shows better results
for the evenly spaced grid despite a lower MAE with the biased grid.

4.4. APPROACH THREE: EFFECT OF ADDITIONAL TRAINING PATTERNS
The aim of the third approach is to explore the value in expanding the amount of data within
the variable space used to train the ANN models. As described in Section 4.1, increasing the
density of training patterns should increase the accuracy of the ANN model. In addition to
the primary 81 simulations that were generated, 5 additional simulations were completed,
with randomly selected values for W, d1, Z, and H, to use for the study of the effect of the
number of training patterns. In particular, these experiments would indicate whether
increasing from a 3 × 3 × 3 × 3 grid to a 5 × 5 × 5 × 5 grid (that is, increasing the number of
simulations performed to generate training patterns from 81 to 625) would be worth the time
and computational cost.

Table 3 indicates that the ANN models are improved in almost every aspect with the
addition of the five extra simulations from which several additional training patterns were
selected. The standard deviation and kurtosis are slightly higher for the impulse ANN, but all
other measures are less. Figure 7 indicates that the impulse ANN is learning better with the
extra training patterns. All measures suggest that expanding to a 5 × 5 × 5 × 5 grid, if
possible, will yield significantly improved results.
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Table 3. Statistical comparison of biased grid models and the biased
grid models with 5 extra simulations

Correlation 
ANN factor MAE RMSE Std deviation Kurtosis
model Extra Bias Extra Bias Extra Bias Extra Bias Extra Bias
Pressure

(MPa) 0.990* 0.987 0.012* 0.040 0.154* 0.173 1.065 1.061* 14.74* 14.78
Impulse

(MPa-ms) 0.996* 0.995 0.053* 0.080 0.339* 0.355 3.782 3.775* 3.87 3.74*
Time of

Arrival 
(ms) 0.977 0.979* 1.269* 1.414 5.666 5.356* 26.82 26.72* 3.77 3.40*

Duration 
(ms) 0.963* 0.961 0.337* 1.918 8.549* 8.781 31.73* 31.81 –0.23* –0.24

Statistical Measure NB: *indicates winning pattern set.



4.5. TESTING
The approaches presented to this point have been compared using data that exists at points
between the tracers used for training the ANN models. It is also important, however, to gauge
the behavior of the ANN models against a blind set of data that exists in the variable space
between the blast wall and structure configurations used to train the ANN models. To this
end, 5 additional randomly generated test simulations were completed to gauge the
effectiveness of the ANN models to the test data. The configurations of the test simulations
are outlined in Table 4 and can be compared against the variable extents in Table 1.

The test produces mixed results. The peak pressure is the most accurate followed 
by the time of arrival, impulse, and the positive phase duration respectively. Table 5 displays 
the behavior and Figure 8 and Figure 9 show the performance of the peak pressure 
and the impulse ANN models.
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Table 4. Test simulation configurations

W (kg-TNT) h (m) d1 (m) Z (m)
680.87 2.64 7.14 29.17
586.62 2.35 5.16 22.31
839.80 3.98 5.16 14.30
560.65 4.60 0.93 7.36
128.99 4.14 7.38 20.67
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Table 5. Comparison of ANN model correlation with test data

Correlation Standard 
ANN model factor MAE RMSE deviation Kurtosis
Peak Pressure (MPa) 0.942 0.044 0.117 0.343 1.229
Impulse (MPa-ms) 0.784 1.486 1.743 2.495 –0.999
Time of Arrival (ms) 0.851 2.010 5.820 15.555 –1.430
Duration (ms) 0.504 24.984 27.067 17.534 –0.633

Figure 8. Correlation of ANN model with test data for peak pressure
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The results tend to be in line with what might be expected. The peak pressure and the time
of arrival are the most accurate, which is intuitive because these values are not as likely to
be effected by multiple reflections. The impulse and duration however are very susceptible
to errors due to multiple reflections and their performance is less accurate than the ANN
models for pressure and time of arrival.

4.6. PREDICTION OF ROOF LOADS
Blast loads applied to roof structures are predicted by applying an increase factor to the free-
field incident pressure based on the standoff, height of the building, and the length of the
building to be loaded as shown in Figure 10 [10].

In contrast to vertical wall reflected pressures where the air pressure has a sudden jump
from atmospheric pressure up to the peak reflected pressure, roof load predictions are
defined as a rise to the peak pressure over time followed by an unequal decay of the blast
pressures [10]. In a free-field situation, roof loads are predictable. In a situation with a
protective blast wall in front of a structure, the predictability of the roof loads is dependent
upon the configuration of W, d1, Z, and hs.
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Figure 9. Correlation of ANN model with test data for impulse
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Figure 10. Factors for predicting blast loading to roofs
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In order to study the effects of protective blast walls on the blast loading of roofs, data on
the first 1.524 m of the structures were collected during all of the simulations generated for
the structure loading ANN’s formulated in this work. A pragmatic evaluation of the variables
provides insight into the effects on the properties that define a blast loading. In general, the
peak pressure and time of arrival are less affected by the presence of a blast wall as opposed
to the impulse and duration. This is seen in the results from the roof load ANN development
(Table 6).

The ANN models for peak pressure, time of arrival, and duration all show good
correlation and display improvement with the addition of extra training patterns as outlined
in previous sections. The impulse ANN does not show good correlation. Other than the
standard deviation being decreased, all the statistical measures become worse by the addition
of extra training patterns for the impulse ANN model.



55..  DDIISSCCUUSSSSIIOONN
In all the cases as discussed above, the pressure and time of arrival functions are captured by
the ANN approach. The impulse and positive phase duration ANNs are less accurate however.
The results suggest that it would be beneficial to increase the number of training patterns input
into the neural networks. The current results are produced using a 3 × 3 × 3 × 3 grid covering
the variable data space. The 3 × 3 × 3 × 3 grid represents 81 experiments with 30 data points
embedded in each experiment for a total of 2,430 training patterns. Increasing to a 5 × 5 × 5
× 5 grid of the variable data space would increase the number of experiments to 625 with 
30 data points embedded in each experiment for a total of 18,750 training patterns.

The implications of increasing the density of the grid of training data is the difficulty in
generating the amount of data required. The problem is magnified when the bounds of the
model are desired to be expanded from the current range. By examining the charge weight
variable, the implications can be demonstrated. The current range for the charge weight is
22.68 kg to 910.42 kg. Assuming an evenly distributed grid spacing, the density for a 3 × 3
grid would require experiments with the charge weight incremented 443.87 kg. Increasing to
the 5 × 5 × 5 × 5 grid would have the charge weight incremented by 221.935 kg. After the
5 × 5 × 5 × 5 grid is established, the bounds of the model can be extended by maintaining a
consistent density of the data in the grid of training data. Thus, for each 221.35 kg
incremental increase in the range of the charge weight, there will be 256 (44) experiments
required to maintain a consistent density.

The computational modeling used to produce the simulations for the 3 × 3 × 3 × 3 grid
was completed using DoD supercomputers. The simulations ranged from 12 processors up
to 164 processors with an average wall clock time of 60 hours. The total number of processor
hours, equal to the number of processors multiplied by the wall clock time, required for the
simulations populating the 3 × 3 × 3 × 3 grid of data was approximately 1.5 million hours.
This exhibits both the large investment required to produce accurate numerical simulations
and the need for a quick engineering tool for efficient and accurate predictions. The
limitations of applying a neural network modeling technique reside predominantly in the
investment to produce the data required for training the ANN model.

The approach developed in this work were compared against simulation runs that were
held back during the training process and used for testing. The ANN approach provides

174 A Neural-Network Model-Based Engineering Tool for Blast Wall Protection of Structures

Table 6. Comparison of ANN model predictions with test data 

Correlation 
ANN factor MAE RMSE Std deviation Kurtosis
model Even Extra Even Extra Even Extra Even Extra Even Extra
Pressure

(MPa) 0.989* 0.989 0.038 0.034* 0.014 0.014 0.071 0.071 9.20 9.06*
Impulse

(MPa-ms) 0.627* 0.601 0.009* 0.031 1.191* 1.214 1.099 1.094* 156.8* 159.8
Time of

Arrival 
(ms) 0.942 0.948* 9.629 0.501* 3.758 3.548* 21.1* 21.2 3.693 3.617*

Duration 
(ms) 0.886 0.903* 3.18* 9.46 7.28 6.76 34.1 33.2* −0.46 −0.42*

Statistical Measure NB: *indicates winning pattern set.



pertinent design information for blast pressure loading to structures behind blast barrier walls
that could be useful for design of the structures. The approach has not been validated against
existing live blast test data. This is a step that would be needed to be addressed before the
method could be validated as a design tool.

66..  CCOONNCCLLUUSSIIOONN
Blast design and assessment of structures protected by blast barrier walls require aids to
develop beneficial configurations. CFD modeling, as demonstrated, can be a very accurate
approach to predict blast wave and structure interaction. In order to produce those accurate
results, there is a very large overhead of hardware requirements, modeling expertise, and
wall clock time. ANNs provide an efficient tool to aid in optimizing site layout and structural
design for terrorist type threats. The advantage of the ANN approach is that it can provide
good results in a fraction of a second, allowing optimal design solutions to be sought. The
downside is that ANNs require a large set of data to achieve acceptable levels of accuracy,
and this data set can be expensive to collect.

The results of this study show the development of an ANN methodology for a range of
values for the variables of charge weight, charge to barrier standoff, barrier to structure
standoff, barrier height, and location on the structure face as well as roof loads. The
development was performed on a 3 × 3 × 3 × 3 grid of the variable data space. Experience
and the results of this study show that moving to a 5 × 5 × 5 × 5 grid of the variable space
would provide improved results. The significance of this study is that it displays the ANN
technology at the edge of its applicability. A total of 81 simulations were required for the 
3 × 3 × 3 × 3 grid, whereas 625 would be required for a 5 × 5 × 5 × 5 grid. The 5 × 5 × 5 × 5
grid would provide improved results for the bounds of the current problem. Furthermore, if
the scope of the model was to be expanded in terms of the range of the variables, then a
corresponding increase in the size of the training data set would be required if the same level
of accuracy was to be maintained

The ANN technology shows the capability to model the nonlinear blast loading function
in an environment with a blast barrier protective wall. The ANN performance has been
presented for a 3 × 3 × 3 × 3 grid of the variable space. There are differing degrees of non-
linearity for the predicted values of each of the variables considered. Peak pressure and time
of arrival show the most predictable responses. Impulse and positive phase duration have a
higher degree of non-linearity that proves more difficult for the ANN approach to learn.
Based on the 6 input variables (W, d1, Z, H, ws, and hs) the ANN provides a fast-running tool
that is able to give an idealized blast load to structural components.
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